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Abstract— This paper implements Simultaneous Localization and Mapping (SLAM) technique to construct a map of a given environment. 
A Real Time Appearance Based Mapping (RTAB-Map) approach was taken for accomplishing this task. Initially, a 2d occupancy grid and 
3d octomap was created from a provided simulated environment. Next, a personal simulated environment was created for mapping as well. 
In this appearance based method, a process called Loop Closure is used to determine whether a robot has seen a location before or not. 
In this paper, it is seen that RTAB-Map is optimized for large scale and long term SLAM by using multiple strategies to allow for loop 
closure to be done in real time and the results depict that it can be an excellent solution for SLAM to develop robots that can map an 
environment in both 2d and 3d. 

Index Terms— Localization, Mapping, Occupancy Grid Mapping, RTAB-Map, SLAM, Graph SLAM 

——————————      —————————— 

1 INTRODUCTION                                                                     
N SLAM (Simultaneous Localization and Mapping), a robot 
must construct a map of the environment, while simultane-
ously localizing itself relative to this map. This problem is 

more challenging than localization or mapping, since neither 
the map nor the robot poses are provided making this prob-
lem a 'chicken or a egg' problem. With noise in the robot's mo-
tion and measurements, the map and robot's pose will be un-
certain, and the errors in the robot's pose estimates and map 
will be correlated. The accuracy of the map depends on the 
accuracy of the localization and vice versa. Given a series of 
sensor observations over discrete time steps, the SLAM prob-
lem is to compute an estimate of the agent’s location and a 
map of the environment. 
In this paper, two simulation environments were provided 
where SLAM was performed. The robot was successfully able 
to localize itself and map the 3d world. The benchmark envi-
ronment is called kitchen-dining Figure 1 and the second envi-
ronment is that of a cafeteria called sagar-cafe Figure 2. 
 

Figure 1: Kitchen - Dining world 
 
 

   
 

Figure 2: Kitchen - Dining world 

2    BACKGROUND 
SLAM algorithms generally fall into 5 categories: 
 
1. Extended Kalman Filter SLAM (EKF) 
2. Sparse Extended Information Filter (SEIF) 
3. Extended Information Form (EIF) 
4. FastSLAM 
5. GraphSLAM 
 
The two most useful approaches to SLAM are Grid based 
FastSLAM [1] and GraphSLAM [2] and these two algorithms 
will be discussed here. 
 
2.1 Grid based FastSLAM 

The FastSLAM algorithm uses a custom particle filter 
approach to solve the full SLAM problem with known 
correspondence. Using particles, FastSLAM estimates a 
posterior over the robot's path along with the map. Each of 
these particles holds the robot's trajectory which gives an 
advantage to SLAM to solve the problem of mapping with 
known poses. In addition to the trajectory, each particle holds 
a map and each feature of the map are represented by a local 
Gaussian. 

I 
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With the FastSLAM algorithm, the problem is now divided 
into two separate independent problems, each of which aims 
to solve the problem of estimating features of the map. To 
solve these independent mini-problems, FastSLAM will use 
the low dimensional Extended Kalman Filter. While map 
features are treated independently, dependency only exists 
between robot pose uncertainties. This custom approach of 
representing the posterior with particle filter and Gaussian is 
known by Rao-Blackwellized particle filter approach [3].The 
Grid based FastSLAM is really an extension of FastSLAM and 
it adapts FastSLAM to grid maps. 

With grid mapping algorithm, the environment can be 
modeled using grid maps without predefining any landmark 
position. So by extending the FastSLAM algorithm to 
occupancy grid maps, the SLAM problem can now be solved 
in an arbitrary environment. While mapping the real world 
environment, mobile robots equipped with range sensors can 
be used and the FastSLAM algorithm can be extended to solve 
the SLAM problem in terms of grid maps. 
 
2.1.1 Grid based FastSLAM techniques 
 
Adapting the FastSLAM algorithm to grid maps is altered in 
the grid based FastSLAM algorithm. Since the grid based 
FastSLAM algorithm uses a particle filter approach and repre-
sents the world in terms of grid maps, both MCL (Monte Carlo 
Localization) and Occupancy Grid Mapping algorithm are 
combined. Now three different techniques are needed which 
are represented by 3 probability functions to adapt FastSLAM 
to grid mapping. These techniques are known as: 
 

1. Sampling motion ),|( ][
1 t

k
tt uxxP − : Estimates the cur-

rent pose given the kth particle's previous pose and 
controls u (MCL). 

2. Map Estimation ),,|( ][
1

][ k
t

k
ttt mxzmP − : Estimates the 

current map given the current measurements, the cur-
rent kth particle's pose and the previous kth particle 
map (use Occupancy Grid Mapping). 

3. Importance weight ),|( ][][ kk
tt mxzP : Estimates the 

current likelihood of the measurement given the cur-
rent kth particle pose and the current kth particle map 
(MCL). 

The sampling motion, map estimation and importance weight 
techniques are the essence of the grid based FastSLAM algo-
rithm. Grid based FastSLAM implements them to estimate 
both the map and the robot's trajectory, given the measure-
ments and the control. The grid based FastSLAM algorithm 
looks very similar to Monte Carlo localization algorithm with 
some additional statements concerning the map estimation. 
Figure 3 denotes the Grid based FastSLAM algorithm. 
 

2.2 GraphSLAM 
Graph SLAM is a SLAM algorithm that solves the full SLAM 
problem. This means that the algorithm recovers the entire 
path and map, instead of just the recent pose and map. This  
Figure 3: Grid based FastSLAM algorithm 
 

difference allows it to consider dependencies between current 
and previous poses. One of the benefits of graph SLAM is the 
reduced need for significant on-board processing capability. 
Another is graph SLAM's increased accuracy over fast SLAM. 
Fast SLAM uses particles to estimate the robot's most likely 
pose. However, at any point in time, it is possible that there is 
not a particle in the most likely location. In fact, chances are 
slim to none especially in large environments. Since graph 
SLAM solves the full SLAM problem, this means that it can 
work with all of the data at once to find the optimal solution.  

 
In graph SLAM, the idea is to organize information in a graph. 
A node in the graph represents either a robot pose xt at a spe-
cific time step t or the location of a feature in the environment 
denoted as m(i) with i = 1. . . . α. An edge in the graph repre-
sents either a measurement constraint between a pose and a 
feature or a motion constraint between two successive poses. 
Since the spatial constraints are soft, they can be considered as 
springs connecting two masses. In this analogy, the full SLAM 
problem can be solved as a global graph optimization prob-
lem. The optimal graph configuration is the one where the 
springs are relaxed, and the forces on each of the nodes are 
minimized. 
 
The Maximum Likelihood Principle (MLE) is used to optimize 
the graph. When applied to SLAM, likelihood tries to estimate 
the most likely configuration of state and feature locations 
given the motion and measurement observations. The meas-
urement update at time step t is given by 
 

                                 )(: i
tt

t mxz +=                           (1) 
which represents for instance a laser range finder measuring 
the distance to the landmark m(i) . Equivalently, a motion up-
date can be defined as 
 
         tt

t uxx += −1:                                       (2) 
 
which could be realized as a control command instructing the 
robot to move a certain distance ut . The updates are assumed 
to have Gaussian noise. The corresponding probability distri-
butions are given by 
 
                          (3) 
 
 
 
                    (4) 
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In some simple cases it is possible to find an analytical solu-
tion to MLE by converting the target function to the negative 
log-likelihood form 
 
 
                    (5) 
 
trying to minimize the sum of all constraints. In more complex 
realistic scenarios, approximate numerical solutions are need-
ed, for instance by applying gradient descent techniques. 

 
In real world, most systems are multi-dimensional and to tack-
le such scenarios, matrices and covariances must be used. The 
state and measurement are given by xt and zt. The constraints 
are given by 
 
                    (6) 
 
The goal of graph SLAM is to create a graph of all robot poses 
and features encountered in the environment and the most 
likely robot's path and map of the environment. This task can 
be broken down into two sections. The front-end and the back-
end. 
 
2.2.1 Grid based FastSLAM techniques 
 
The front end of graph SLAM looks at how to construct the 
graph, using the odometry and sensory measurements collect-
ed by the robot. This includes interpreting sensory data, creat-
ing the graph and continuing to add nodes and edges to it as 
the robot traverses the environment. Naturally the front end 
can differ greatly from application to application depending 
on the desired goal, including accuracy, the sensor used and 
other factors e.g. the front end of a mobile robot applying 
SLAM in the office using a Laser Range finder would differ 
greatly from the front end of a vehicle operating on a large 
outdoor environment and using a stereo camera. The front 
end of graph SLAM also has the challenge of solving the data 
association problem. In simpler terms, this means accurately 
identifying whether features in the environment have been 
previously seen. 

 
The back end of graph SLAM is where the magic happens. The 
input to the back end is the completed graph with all of the 
constraints and the output is the most probable configuration 
of robot poses and map features. The back end is an optimiza-
tion process that takes all of the constraints and finds the sys-
tem configuration that produces the smallest error. The back 
end is a lot more consistent across applications. The front end 
and the back end can be completed in succession or can be 
performed iteratively, with a back end feeding an updated 
graph to the front end for further processing. 
 
2.2.2 Using RTAB-Map for 3D Graph SLAM 
 
RTAB-Map (Real Time Appearance Based Mapping) [4] is a 

graph based SLAM approach. Appearance based SLAM 
means that the algorithm uses data collected from vision sen-
sors to localize the robot and map the environment. In appear-
ance based methods, a process called Loop Closure is used to 
determine whether the robot has seen a location before. As the 
robot travels to new areas in its environment, the map is ex-
panded and the number of images that each new image must 
be compared to increases. This causes the loop closure to take 
longer with the complexity increasing linearly. RTAB-Map is 
optimized for large scale and long term SLAM by using mul-
tiple strategies to allow for loop closure to be done in real 
time. Figure 4 shows the block diagram of the front end and 
the back end. 
 

Figure 4: RTAB-Map Front end and Back End block diagram 

 

3 SCENE AND ROBOT CONFIGURATION 

The ROS package slam_project deploys the RTAB-Map to 
perform SLAM on two environments. The first environment is 
an environment provided by Udacity as a part of this research 
project and is named Kitchen-Dining. The second environment 
is a custom made environment of a cafeteria named sagar_cafe. 
Just like other robotics project, this project has been organized 
into different folders containing the meshes, Gazebo SDF files, 
scripts, robot model URDFs, configuration files and launch 
files. 

The URDF folder contains the files sagar_bot.xacro defining 
the links and joints of the robot model used for physics 
simulation and visualization as well as the file 
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sagar_bot.gazebo specifying the Gazebo plugins for 
differential drive, RGB-D camera and laser range finder. 
Section 3.1 goes into more details about the robot model. 
Besides the provided kitchen-dining world, the worlds 
directory contains a file named sagar_cafe.world defining a 
custom indoor cafeteria environment in SDF format. Section 
3.2 discusses this in more details. The image and mesh files 
necessary to model the Hokuyo laser and Kinect camera are 
downloaded from the Gazebo model database and stored in 
the meshes folder. The launch folder contains four ROS node 
launch configurations, as detailed in section 3.3. The config 
directory contains the RViz configuration file, and a script for 
tele-operating the rover can be found in scripts. 
 
3.1 Robot Model 
Figure 1 and 2 depicts the robot model inside the Gazebo sim-
ulation environments of both the provided and the custom 
made one. The URDF specification can be found in the file 
sagar_bot.xacro. The transform tree associated with the robot 
is shown in Figure 5. 

 
Figure 5: Transform Tree of the Robot – sagar_bot 
 
For this project, the robot from [5] was taken as a starting 
point. The xacro file provides the shape and size of the robot 
in macro format. For the sagar_bot, a fixed base is used. A sin-
gle link, with the name defined as "chassis", encompassed the 
base as well as the caster wheels. Each link has specific ele-
ments, such as the inertial or the collision elements. The chas-
sis is a cuboidal (or box), whereas the casters are spherical as 
denoted by their "geometry" tags. Each link (or joint) has an 
origin (or pose) defined as well. Every element of that link or 
joint will have its own origin, which will be relative to the 
link's frame of reference. 
 
For this base, as the casters are included as part of the link (for 
stability purposes), there is no need for any additional links to 

define the casters, and therefore no joints to connect them. The 
casters do, however, have friction coefficients defined for 
them, and are set to 0, to allow for free motion while moving. 
 
Two wheels were attached to the robot. Each wheel is repre-
sented as a link and is connected to the base link (the chassis) 
with a joint. For each wheel, a "collision", "inertial" and "visu-
al" elements are present. The joint type is set to "continuous" 
and is similar to a revolute joint but has no limits on its rota-
tion. It can rotate continuously about an axis. The joint will 
have its own axis of rotation, some specific joint dynamics that 
correspond to the physical properties of the joint like "fric-
tion", and certain limits to enforce the maximum "effort" and 
"velocity" for that joint. The limits are useful constraints in 
regards to a physical robot and can help create a more robust 
robot model in simulation as well. To enable the robot to per-
form appearance based mapping using visual odometry, the 
generic RGB camera of the original model is upgraded to a 
Kinect RGB-D camera. The camera is mounted to the front of 
the chassis to allow for unobstructed view, facing in forward 
direction. The mesh files for the Kinect camera model are 
downloaded from the Gazebo model database and included in 
the slam_project/meshes folder. Like the original model, the 
rover is fitted with a Hokuyo 2D laser range finder. The corre-
sponding hokuyo link is mounted with a fixed joint on the top 
of the chassis, to let the laser beans rotate without hitting any 
part of the robot. the laser range finder provides more precise 
localization and thereby refines geometric constraints The dif-
ferential drive plugin is configured in the sagar_bot.gazebo 
file to publish control commands to the /cmd_vel topic and 
odometry messages to the /odom topic. The camera plugin is 
configured to publish raw RGB images to 
/camera/rgb/image_raw and raw depth images to 
/camera/depth/image_raw. The laser plugin is configured to 
publish messages of type LaserScan to the /scan topic. A 

graphical view of the ROS topics and nodes is shown in Figure 
6 and a closeup of the robot model is depicted in Figure 7. 
 
Figure 6: RQT graph of the topics after all the nodes are launched 
Figure 7: Close up view of the robot model 
 
3.2 Design of the world 
As the second part of the project, the custom world is created 
in Gazebo. This world is based on the cafe model inside Gaze-
bo database. The base model is customized with different ob-
jects like tables, beer can, people, trees etc. These objects serve 
as distinctive elements in the base world for the robot to dis-
tinguish and map. In this world, the kitchen cannot be entered 
by the robot. A bird's eye view of this world is provided in 
Figure 8. 
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Figure 8: Bird's eye view of Sagar cafe 
 
3.3 Launch file configuration 
Four launch files are required for a successful mapping of the 
environments in simulation. The gazebo simulation environ-
ment is (kitchen-dining or cafe) specified in the world.launch 
file. The teleop.launch file launches the teleop keyboard 
which is required for moving the robot in the simulation 
world. The mapping.launch file is used to start the RTAB-
Map node. This node is used for loop closure detection using 
the ORB-SLAM algorithm. ORB-SLAM is a versatile and accu-
rate Monocular SLAM solution able to compute in real-time 
the camera trajectory and a sparse 3D reconstruction of the 
scene in a wide variety of environments, ranging from small 
hand-held sequences to a car driven around several city 
blocks. It is able to close large loops and perform global re-
localization in real-time and from wide baselines. Finally, the 
rviz.launch file starts visualization of the rover, sensor data, as 
well as map and camera topics in RViz.Figure 9 depicts RViz 
view of the world at the starting point. 

Figure 9: Starting point of the robot as seen in RViz 
 
During the mapping of the environment, the mapping data is 
saved in the rtabmap.db database. The localization.launch file 
can be started in order to localize the robot during the run. 
 

4 RESULTS 
The mapping was done by the robot controlled by the teleop 
keyboard. In order to be able to have more than 3 loop closure 
detection, which was the project's benchmark, the robot was 
navigated through the full environment of both the worlds so 
that it could collect more images. 

4.1 Kitchen-Dining world 
The mapping run in the provided world ended with 66 global 
loop closures. This file has a size of 315 MB and is named as 
rtabmap_kitchen_dining.db. Figure 10 shows the robot's tra-
jectory as well as the 2d occupancy grid map of the kitch-
en_dining world. 

Figure 10: Robot's trajectory and 2d occupancy grid map of the Kitchen-Dining 
world 
 
At the end of the multiple passes, a well structured 3d point 
cloud map was created by using the Export 3d Clouds function-
ality. Figure 11 depicts the reconstructed 3D point cloud data. 
It can be seen that most features in the world like the chairs 
and tables are reconstructed properly and are distinctive. Fig-
ure 12 shows the RViz result of the same world after the end 

of the mapping task. 
Figure 11: Reconstructed Point cloud data in RTAB-Map viewer of the Kitchen-
Dining world 
 
At the end of the map, the loop closures can be seen in the 
rtabmap_kitchen_dining.db. Figure 13 shows one of them. 
 
4.1 Sagar-cafe world 
In the custom made world - sagar_cafe.world, the robot per-
formed well. As the robot is very short, some of the taller ob-
jects like the people, trees are not fully mapped. The kitchen 
also could not be traveled by the robot. Figure 14 and 15 de-
picts the RTAB-map view and the RViz view of this world 
respectively at the end of the mapping. 
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Figure 12: Rviz view of the Kitchen-dining world 

5 DISCUSSION 
In both the environments, successful mapping was performed in 
order to identify the ground truth and the distinctive features of 
the environment like, walls, tables, chairs, trees, people etc. In the 
sagar_cafe world, the robot could not enter the kitchen area, 
which can be seen in right lower corner of Figure 14 and Figure 
15. One of the possible explanations might be that there is a 
height difference of the floor between the living room and the 
kitchen. Another possible explanation might be that there is a 
transparent door separating those two rooms and hence the robot 
couldn't pass through. 

Figure 13: Loop Closure detection 
 
The generated 2d and 3d maps can be improved by doing more 
mapping runs which cover the environment in a more complete 
manner and by optimizing the loop closure detection further. 

6 CONCLUSION/FUTURE WORK 
An interesting future work would be to explore the RTAB-Map 
package's visualization section in more details. The obstacle de-
tection feature can be deployed in order to extracts obstacles and 
the ground from your point cloud. With this information in hand, 
these obstacles can be avoided when executing a desired path. 
Another potential area would be Wifi signal strength mapping. 
This feature allows the user to visualize the strength of your ro-
bot’s WiFi connection. This can be important in order to deter-
mine where the robot may lose its signal, therefore dictating it to 
avoid certain areas. The situation can also be remedied with larg-

er antennas. 

Figure 14: Reconstructed Point cloud data in RTAB-Map viewer in the 
sagar_cafe world 

Figure 15: RViz view of the sagar_cafe world 
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