
International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1718
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Simultaneous Localization and Mapping (SLAM)
using RTAB-Map

Sagarnil Das

Abstract— This paper implements Simultaneous Localization and Mapping (SLAM) technique to construct a map of a given environment.
A Real Time Appearance Based Mapping (RTAB-Map) approach was taken for accomplishing this task. Initially, a 2d occupancy grid and
3d octomap was created from a provided simulated environment. Next, a personal simulated environment was created for mapping as well.
In this appearance based method, a process called Loop Closure is used to determine whether a robot has seen a location before or not.
In this paper, it is seen that RTAB-Map is optimized for large scale and long term SLAM by using multiple strategies to allow for loop
closure to be done in real time and the results depict that it can be an excellent solution for SLAM to develop robots that can map an
environment in both 2d and 3d.

Index Terms— Localization, Mapping, Occupancy Grid Mapping, RTAB-Map, SLAM, Graph SLAM

——————————  ——————————

1 INTRODUCTION
N SLAM (Simultaneous Localization and Mapping), a robot
must construct a map of the environment, while simultane-
ously localizing itself relative to this map. This problem is

more challenging than localization or mapping, since neither
the map nor the robot poses are provided making this prob-
lem a 'chicken or a egg' problem. With noise in the robot's mo-
tion and measurements, the map and robot's pose will be un-
certain, and the errors in the robot's pose estimates and map
will be correlated. The accuracy of the map depends on the
accuracy of the localization and vice versa. Given a series of
sensor observations over discrete time steps, the SLAM prob-
lem is to compute an estimate of the agent’s location and a
map of the environment.
In this paper, two simulation environments were provided
where SLAM was performed. The robot was successfully able
to localize itself and map the 3d world. The benchmark envi-
ronment is called kitchen-dining Figure 1 and the second envi-
ronment is that of a cafeteria called sagar-cafe Figure 2.

Figure 1: Kitchen - Dining world

Figure 2: Kitchen - Dining world

2 BACKGROUND
SLAM algorithms generally fall into 5 categories:

1. Extended Kalman Filter SLAM (EKF)
2. Sparse Extended Information Filter (SEIF)
3. Extended Information Form (EIF)
4. FastSLAM
5. GraphSLAM

The two most useful approaches to SLAM are Grid based
FastSLAM [1] and GraphSLAM [2] and these two algorithms
will be discussed here.

2.1 Grid based FastSLAM

The FastSLAM algorithm uses a custom particle filter
approach to solve the full SLAM problem with known
correspondence. Using particles, FastSLAM estimates a
posterior over the robot's path along with the map. Each of
these particles holds the robot's trajectory which gives an
advantage to SLAM to solve the problem of mapping with
known poses. In addition to the trajectory, each particle holds
a map and each feature of the map are represented by a local
Gaussian.

I

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1719
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

22 2/)(

2
1)(mtt zz

m
tu exp σ

πσ
−−=

22 2/)(

2
1)(utt xx

u
tm ezp σ

πσ
−−=

With the FastSLAM algorithm, the problem is now divided
into two separate independent problems, each of which aims
to solve the problem of estimating features of the map. To
solve these independent mini-problems, FastSLAM will use
the low dimensional Extended Kalman Filter. While map
features are treated independently, dependency only exists
between robot pose uncertainties. This custom approach of
representing the posterior with particle filter and Gaussian is
known by Rao-Blackwellized particle filter approach [3].The
Grid based FastSLAM is really an extension of FastSLAM and
it adapts FastSLAM to grid maps.

With grid mapping algorithm, the environment can be
modeled using grid maps without predefining any landmark
position. So by extending the FastSLAM algorithm to
occupancy grid maps, the SLAM problem can now be solved
in an arbitrary environment. While mapping the real world
environment, mobile robots equipped with range sensors can
be used and the FastSLAM algorithm can be extended to solve
the SLAM problem in terms of grid maps.

2.1.1 Grid based FastSLAM techniques

Adapting the FastSLAM algorithm to grid maps is altered in
the grid based FastSLAM algorithm. Since the grid based
FastSLAM algorithm uses a particle filter approach and repre-
sents the world in terms of grid maps, both MCL (Monte Carlo
Localization) and Occupancy Grid Mapping algorithm are
combined. Now three different techniques are needed which
are represented by 3 probability functions to adapt FastSLAM
to grid mapping. These techniques are known as:

1. Sampling motion),|(][
1 t

k
tt uxxP − : Estimates the cur-

rent pose given the kth particle's previous pose and
controls u (MCL).

2. Map Estimation),,|(][
1

][k
t

k
ttt mxzmP − : Estimates the

current map given the current measurements, the cur-
rent kth particle's pose and the previous kth particle
map (use Occupancy Grid Mapping).

3. Importance weight),|(][][kk
tt mxzP : Estimates the

current likelihood of the measurement given the cur-
rent kth particle pose and the current kth particle map
(MCL).

The sampling motion, map estimation and importance weight
techniques are the essence of the grid based FastSLAM algo-
rithm. Grid based FastSLAM implements them to estimate
both the map and the robot's trajectory, given the measure-
ments and the control. The grid based FastSLAM algorithm
looks very similar to Monte Carlo localization algorithm with
some additional statements concerning the map estimation.
Figure 3 denotes the Grid based FastSLAM algorithm.

2.2 GraphSLAM
Graph SLAM is a SLAM algorithm that solves the full SLAM
problem. This means that the algorithm recovers the entire
path and map, instead of just the recent pose and map. This
Figure 3: Grid based FastSLAM algorithm

difference allows it to consider dependencies between current
and previous poses. One of the benefits of graph SLAM is the
reduced need for significant on-board processing capability.
Another is graph SLAM's increased accuracy over fast SLAM.
Fast SLAM uses particles to estimate the robot's most likely
pose. However, at any point in time, it is possible that there is
not a particle in the most likely location. In fact, chances are
slim to none especially in large environments. Since graph
SLAM solves the full SLAM problem, this means that it can
work with all of the data at once to find the optimal solution.

In graph SLAM, the idea is to organize information in a graph.
A node in the graph represents either a robot pose xt at a spe-
cific time step t or the location of a feature in the environment
denoted as m(i) with i = 1. . . . α. An edge in the graph repre-
sents either a measurement constraint between a pose and a
feature or a motion constraint between two successive poses.
Since the spatial constraints are soft, they can be considered as
springs connecting two masses. In this analogy, the full SLAM
problem can be solved as a global graph optimization prob-
lem. The optimal graph configuration is the one where the
springs are relaxed, and the forces on each of the nodes are
minimized.

The Maximum Likelihood Principle (MLE) is used to optimize
the graph. When applied to SLAM, likelihood tries to estimate
the most likely configuration of state and feature locations
given the motion and measurement observations. The meas-
urement update at time step t is given by

)(: i
tt

t mxz += (1)
which represents for instance a laser range finder measuring
the distance to the landmark m(i) . Equivalently, a motion up-
date can be defined as

 tt

t uxx += −1: (2)

which could be realized as a control command instructing the
robot to move a certain distance ut . The updates are assumed
to have Gaussian noise. The corresponding probability distri-
butions are given by

 (3)

 (4)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1720
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

∑∑ −
+

−
=

t u

tt

t m

tt
GraphSLAM

xxzzJ 22)()(
σσ

∑ −− ++Ω=
t

tt
T
ttt

T
t

T
GraphSLAM vQvwRwxxJ)(11

00

In some simple cases it is possible to find an analytical solu-
tion to MLE by converting the target function to the negative
log-likelihood form

 (5)

trying to minimize the sum of all constraints. In more complex
realistic scenarios, approximate numerical solutions are need-
ed, for instance by applying gradient descent techniques.

In real world, most systems are multi-dimensional and to tack-
le such scenarios, matrices and covariances must be used. The
state and measurement are given by xt and zt. The constraints
are given by

 (6)

The goal of graph SLAM is to create a graph of all robot poses
and features encountered in the environment and the most
likely robot's path and map of the environment. This task can
be broken down into two sections. The front-end and the back-
end.

2.2.1 Grid based FastSLAM techniques

The front end of graph SLAM looks at how to construct the
graph, using the odometry and sensory measurements collect-
ed by the robot. This includes interpreting sensory data, creat-
ing the graph and continuing to add nodes and edges to it as
the robot traverses the environment. Naturally the front end
can differ greatly from application to application depending
on the desired goal, including accuracy, the sensor used and
other factors e.g. the front end of a mobile robot applying
SLAM in the office using a Laser Range finder would differ
greatly from the front end of a vehicle operating on a large
outdoor environment and using a stereo camera. The front
end of graph SLAM also has the challenge of solving the data
association problem. In simpler terms, this means accurately
identifying whether features in the environment have been
previously seen.

The back end of graph SLAM is where the magic happens. The
input to the back end is the completed graph with all of the
constraints and the output is the most probable configuration
of robot poses and map features. The back end is an optimiza-
tion process that takes all of the constraints and finds the sys-
tem configuration that produces the smallest error. The back
end is a lot more consistent across applications. The front end
and the back end can be completed in succession or can be
performed iteratively, with a back end feeding an updated
graph to the front end for further processing.

2.2.2 Using RTAB-Map for 3D Graph SLAM

RTAB-Map (Real Time Appearance Based Mapping) [4] is a

graph based SLAM approach. Appearance based SLAM
means that the algorithm uses data collected from vision sen-
sors to localize the robot and map the environment. In appear-
ance based methods, a process called Loop Closure is used to
determine whether the robot has seen a location before. As the
robot travels to new areas in its environment, the map is ex-
panded and the number of images that each new image must
be compared to increases. This causes the loop closure to take
longer with the complexity increasing linearly. RTAB-Map is
optimized for large scale and long term SLAM by using mul-
tiple strategies to allow for loop closure to be done in real
time. Figure 4 shows the block diagram of the front end and
the back end.

Figure 4: RTAB-Map Front end and Back End block diagram

3 SCENE AND ROBOT CONFIGURATION

The ROS package slam_project deploys the RTAB-Map to
perform SLAM on two environments. The first environment is
an environment provided by Udacity as a part of this research
project and is named Kitchen-Dining. The second environment
is a custom made environment of a cafeteria named sagar_cafe.
Just like other robotics project, this project has been organized
into different folders containing the meshes, Gazebo SDF files,
scripts, robot model URDFs, configuration files and launch
files.

The URDF folder contains the files sagar_bot.xacro defining
the links and joints of the robot model used for physics
simulation and visualization as well as the file

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1721
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

sagar_bot.gazebo specifying the Gazebo plugins for
differential drive, RGB-D camera and laser range finder.
Section 3.1 goes into more details about the robot model.
Besides the provided kitchen-dining world, the worlds
directory contains a file named sagar_cafe.world defining a
custom indoor cafeteria environment in SDF format. Section
3.2 discusses this in more details. The image and mesh files
necessary to model the Hokuyo laser and Kinect camera are
downloaded from the Gazebo model database and stored in
the meshes folder. The launch folder contains four ROS node
launch configurations, as detailed in section 3.3. The config
directory contains the RViz configuration file, and a script for
tele-operating the rover can be found in scripts.

3.1 Robot Model
Figure 1 and 2 depicts the robot model inside the Gazebo sim-
ulation environments of both the provided and the custom
made one. The URDF specification can be found in the file
sagar_bot.xacro. The transform tree associated with the robot
is shown in Figure 5.

Figure 5: Transform Tree of the Robot – sagar_bot

For this project, the robot from [5] was taken as a starting
point. The xacro file provides the shape and size of the robot
in macro format. For the sagar_bot, a fixed base is used. A sin-
gle link, with the name defined as "chassis", encompassed the
base as well as the caster wheels. Each link has specific ele-
ments, such as the inertial or the collision elements. The chas-
sis is a cuboidal (or box), whereas the casters are spherical as
denoted by their "geometry" tags. Each link (or joint) has an
origin (or pose) defined as well. Every element of that link or
joint will have its own origin, which will be relative to the
link's frame of reference.

For this base, as the casters are included as part of the link (for
stability purposes), there is no need for any additional links to

define the casters, and therefore no joints to connect them. The
casters do, however, have friction coefficients defined for
them, and are set to 0, to allow for free motion while moving.

Two wheels were attached to the robot. Each wheel is repre-
sented as a link and is connected to the base link (the chassis)
with a joint. For each wheel, a "collision", "inertial" and "visu-
al" elements are present. The joint type is set to "continuous"
and is similar to a revolute joint but has no limits on its rota-
tion. It can rotate continuously about an axis. The joint will
have its own axis of rotation, some specific joint dynamics that
correspond to the physical properties of the joint like "fric-
tion", and certain limits to enforce the maximum "effort" and
"velocity" for that joint. The limits are useful constraints in
regards to a physical robot and can help create a more robust
robot model in simulation as well. To enable the robot to per-
form appearance based mapping using visual odometry, the
generic RGB camera of the original model is upgraded to a
Kinect RGB-D camera. The camera is mounted to the front of
the chassis to allow for unobstructed view, facing in forward
direction. The mesh files for the Kinect camera model are
downloaded from the Gazebo model database and included in
the slam_project/meshes folder. Like the original model, the
rover is fitted with a Hokuyo 2D laser range finder. The corre-
sponding hokuyo link is mounted with a fixed joint on the top
of the chassis, to let the laser beans rotate without hitting any
part of the robot. the laser range finder provides more precise
localization and thereby refines geometric constraints The dif-
ferential drive plugin is configured in the sagar_bot.gazebo
file to publish control commands to the /cmd_vel topic and
odometry messages to the /odom topic. The camera plugin is
configured to publish raw RGB images to
/camera/rgb/image_raw and raw depth images to
/camera/depth/image_raw. The laser plugin is configured to
publish messages of type LaserScan to the /scan topic. A

graphical view of the ROS topics and nodes is shown in Figure
6 and a closeup of the robot model is depicted in Figure 7.

Figure 6: RQT graph of the topics after all the nodes are launched
Figure 7: Close up view of the robot model

3.2 Design of the world
As the second part of the project, the custom world is created
in Gazebo. This world is based on the cafe model inside Gaze-
bo database. The base model is customized with different ob-
jects like tables, beer can, people, trees etc. These objects serve
as distinctive elements in the base world for the robot to dis-
tinguish and map. In this world, the kitchen cannot be entered
by the robot. A bird's eye view of this world is provided in
Figure 8.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1722
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Figure 8: Bird's eye view of Sagar cafe

3.3 Launch file configuration
Four launch files are required for a successful mapping of the
environments in simulation. The gazebo simulation environ-
ment is (kitchen-dining or cafe) specified in the world.launch
file. The teleop.launch file launches the teleop keyboard
which is required for moving the robot in the simulation
world. The mapping.launch file is used to start the RTAB-
Map node. This node is used for loop closure detection using
the ORB-SLAM algorithm. ORB-SLAM is a versatile and accu-
rate Monocular SLAM solution able to compute in real-time
the camera trajectory and a sparse 3D reconstruction of the
scene in a wide variety of environments, ranging from small
hand-held sequences to a car driven around several city
blocks. It is able to close large loops and perform global re-
localization in real-time and from wide baselines. Finally, the
rviz.launch file starts visualization of the rover, sensor data, as
well as map and camera topics in RViz.Figure 9 depicts RViz
view of the world at the starting point.

Figure 9: Starting point of the robot as seen in RViz

During the mapping of the environment, the mapping data is
saved in the rtabmap.db database. The localization.launch file
can be started in order to localize the robot during the run.

4 RESULTS
The mapping was done by the robot controlled by the teleop
keyboard. In order to be able to have more than 3 loop closure
detection, which was the project's benchmark, the robot was
navigated through the full environment of both the worlds so
that it could collect more images.

4.1 Kitchen-Dining world
The mapping run in the provided world ended with 66 global
loop closures. This file has a size of 315 MB and is named as
rtabmap_kitchen_dining.db. Figure 10 shows the robot's tra-
jectory as well as the 2d occupancy grid map of the kitch-
en_dining world.

Figure 10: Robot's trajectory and 2d occupancy grid map of the Kitchen-Dining
world

At the end of the multiple passes, a well structured 3d point
cloud map was created by using the Export 3d Clouds function-
ality. Figure 11 depicts the reconstructed 3D point cloud data.
It can be seen that most features in the world like the chairs
and tables are reconstructed properly and are distinctive. Fig-
ure 12 shows the RViz result of the same world after the end

of the mapping task.
Figure 11: Reconstructed Point cloud data in RTAB-Map viewer of the Kitchen-
Dining world

At the end of the map, the loop closures can be seen in the
rtabmap_kitchen_dining.db. Figure 13 shows one of them.

4.1 Sagar-cafe world
In the custom made world - sagar_cafe.world, the robot per-
formed well. As the robot is very short, some of the taller ob-
jects like the people, trees are not fully mapped. The kitchen
also could not be traveled by the robot. Figure 14 and 15 de-
picts the RTAB-map view and the RViz view of this world
respectively at the end of the mapping.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1723
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Figure 12: Rviz view of the Kitchen-dining world

5 DISCUSSION
In both the environments, successful mapping was performed in
order to identify the ground truth and the distinctive features of
the environment like, walls, tables, chairs, trees, people etc. In the
sagar_cafe world, the robot could not enter the kitchen area,
which can be seen in right lower corner of Figure 14 and Figure
15. One of the possible explanations might be that there is a
height difference of the floor between the living room and the
kitchen. Another possible explanation might be that there is a
transparent door separating those two rooms and hence the robot
couldn't pass through.

Figure 13: Loop Closure detection

The generated 2d and 3d maps can be improved by doing more
mapping runs which cover the environment in a more complete
manner and by optimizing the loop closure detection further.

6 CONCLUSION/FUTURE WORK
An interesting future work would be to explore the RTAB-Map
package's visualization section in more details. The obstacle de-
tection feature can be deployed in order to extracts obstacles and
the ground from your point cloud. With this information in hand,
these obstacles can be avoided when executing a desired path.
Another potential area would be Wifi signal strength mapping.
This feature allows the user to visualize the strength of your ro-
bot’s WiFi connection. This can be important in order to deter-
mine where the robot may lose its signal, therefore dictating it to
avoid certain areas. The situation can also be remedied with larg-

er antennas.

Figure 14: Reconstructed Point cloud data in RTAB-Map viewer in the
sagar_cafe world

Figure 15: RViz view of the sagar_cafe world

7 END SECTIONS
7.1 Acknowledgements
The author sincerely thanks Udacity for their support and cri-
tiques throughout the project. The kitchen-dining world was
provided by them.

REFERENCES
[1] M. Montemerlo, S. Thrun, D. Koller and B. Wegbreit, “FASTSLAM: A FAC-

TORED SOLUTION TO THE SIMULTANEOUS LOCALIZATION AND
MAPPING PROBLEM,” In Proceedings of the AAAI National Conference on Arti-
ficial Intelligence, pp. 593-598, 2002, AAAI.

[2] S. Thrun and M. Montemarlo, “THE GRAPH SLAM ALGORITHM WITH
APPLICATIONS TO LARGE SCALE MAPPING OF URBAN STRUC-
TURES,” The International Journal of Robotics Research volume 25, issue 5-6, pp.
403-429, 2006, IJRR

[3] G. Grisetti, C. Stachniss and Wolfram Burgard, “IMPROVED TECHNIQUES
FOR GRID MAPPING WITH RAO-BLACKWELLIZED PARTICLE FIL-
TERS,” IEEE Transactions on robotics, volume 23, issue 1, pp. 34-46, 2007, (IEEE
transactions)

[4] M. Labbe and F. Michaud, “ONLINE GLOBAL LOOP CLOSURE DETEC-
TION FOR LARGE SCALE MULTI-SESSION GRAPH BASED SLAM,”
IEEE/RSJ International Conference on Intelligent Robots and systems (2014), pp.
2661-2666, doi: 10.1109/IROS.2014.6942926

[5] S. Das, “ROBOT LOCALIZATION IN A MAPPED ENVIRONMENT US-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 1724
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

ING ADAPTIVE MONTE CARLO ALGORITHM”, unpublished,
https://drive.google.com/open?id=13pkunfwA80RmJE8vxIkLJ8PTaOI6DR
YG

IJSER

http://www.ijser.org/

	1 Introduction
	2 Background
	2.1 Grid based FastSLAM
	The FastSLAM algorithm uses a custom particle filter approach to solve the full SLAM problem with known correspondence. Using particles, FastSLAM estimates a posterior over the robot's path along with the map. Each of these particles holds the robot's...
	With the FastSLAM algorithm, the problem is now divided into two separate independent problems, each of which aims to solve the problem of estimating features of the map. To solve these independent mini-problems, FastSLAM will use the low dimensional...
	With grid mapping algorithm, the environment can be modeled using grid maps without predefining any landmark position. So by extending the FastSLAM algorithm to occupancy grid maps, the SLAM problem can now be solved in an arbitrary environment. While...
	2.2 GraphSLAM

	3 Scene and robot configuration
	The ROS package slam_project deploys the RTAB-Map to perform SLAM on two environments. The first environment is an environment provided by Udacity as a part of this research project and is named Kitchen-Dining. The second environment is a custom made ...
	The URDF folder contains the files sagar_bot.xacro defining the links and joints of the robot model used for physics simulation and visualization as well as the file sagar_bot.gazebo specifying the Gazebo plugins for differential drive, RGB-D camera a...
	3.1 Robot Model

	4 results
	5 discussion
	6 Conclusion/future work
	7 End sections
	7.1 Acknowledgements

	References

